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Abstract

Background: Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association stud-
ies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely un-
known. Methods: To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer
transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan.
We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls,
with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue sam-
ples (NCI Laboratory of Translational Genomics [n¼95] and Genotype-Tissue Expression v7 [n¼174] datasets) and data
from 48 different tissues (Genotype-Tissue Expression v7, n¼74–421 samples). Results: We identified 25 genes whose
genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate <
.05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9;
12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22:
RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA;
9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these
genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at
known loci) remained statistically significant after Bonferroni correction. Conclusions: By integrating gene expression and
genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further
investigation.

Pancreatic cancer is the third leading cause of cancer deaths in
the United States (1) and seventh worldwide (2). Established risk
factors include tobacco smoking, long-standing diabetes, obe-
sity, heavy alcohol consumption, chronic pancreatitis, and fam-
ily history of pancreatic cancer (3). Inherited rare mutations in
hereditary cancer and pancreatitis genes, identified in families
with a high incidence of disease, account for a small percentage
of cases (4). At the other end of the spectrum, common risk var-
iants with low penetrance have been discovered through ge-
nome-wide association studies (GWAS) (5–11). However, these
loci explain a small fraction of genetic heritability for pancreatic
cancer, and the genes underlying the associations at most of
these are unknown (11–14).

Most susceptibility alleles discovered through GWAS reside
in noncoding regions of the genome and likely function

through allele-specific regulation of gene expression (15). A
transcriptome-wide association study (TWAS) builds on this
premise by imputing genetically predicted gene expression
levels into GWAS datasets to discover genes whose cis-regu-
lated expression is associated with complex traits (16–18).
This approach has been applied to several common diseases,
including melanoma, breast, prostate, and ovarian cancers
(19–24). In this comprehensive TWAS for pancreatic cancer,
we leveraged two expression quantitative trait loci (eQTL)
datasets generated from histologically normal pancreatic tis-
sue samples from individuals of European ancestry (25,26),
with GWAS summary statistics [Pancreatic Cancer Cohort
Consortium (PanScan) I–III and Pancreatic Cancer Case-
Control Consortium (PanC4) (6–11)] to identify genes associ-
ated with risk of pancreatic cancer.
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Methods

Transcriptome and Genotype Datasets

Two histologically normal-derived pancreatic expression data-
sets, the National Cancer Institute’s Laboratory of Translational
Genomics (LTG) (25) and the Genotype-Tissue Expression (GTEx,
v7) (27), were used. Only samples with more than 80% European
ancestry were included (LTG, n¼ 95; GTEx, n¼ 174). Alignment
of RNA-seq reads from the LTG data (Illumina HiSeq 2000,
phs001776.v1.p1) was performed using STAR v2.4.2a (28) based
on GENCODE v19 gene annotations (GRCh37/hg19). For GTEx,
gene expression read counts (Illumina HiSeq 2000/2500) for pan-
creatic tissue samples were obtained through controlled access
(phs000424.v7.p2). The LTG and GTEx pancreatic transcriptome
datasets were also combined for genes expressed in both data-
sets (see Supplementary Methods, available online).

Blood- or normal tissue–derived DNA samples (LTG dataset)
were genotyped on Illumina OmniExpress or Omni1M arrays
(25). After quality control, genotypes were imputed using the
1000 Genomes imputation reference dataset via the Michigan
Imputation Server (29). Genotypes for GTEx samples were
obtained via dbGaP (phs000424.v7.p2). Principal components
were calculated for genotype data using SNPRelate (30). Gene
expression values were adjusted for five principal components,
probabilistic estimation of expression residuals factors (31), and
gender.

Building Pancreatic Tissue Gene Expression Prediction
Models

Expression prediction models were computed in FUSION (17) us-
ing variants 6500 kb of each gene. Genes with nominally signifi-
cant cis–single-nucleotide polymorphism (SNP)-heritability
(likelihood ratio test P< .05) and cross-validation (R2 > 0.01)
were used to train TWAS prediction models with a fivefold
cross-validation. Prediction models were also computed using
MetaXcan (16) for variants 61 Mb of each gene. The model for
each gene was implemented in the glmnet R package, with a
ridge-lasso mixing parameter (a¼ 0.5) and a penalty parameter
lambda chosen through 10-fold cross-validation (32). Model per-
formance was compared across the three expression datasets
(LTG, GTEx, and LTG þ GTEx) and two TWAS methods (FUSION
and MetaXcan) showing good correlation (Supplementary
Figure 1, available online). For cross-tissue TWAS, we used gene
expression prediction models for 48 different human tissues
from PredictDB (http://predictdb.org/) (16). These models were
trained using GTEx (v7) data for European participants only, us-
ing PrediXcan (see Supplementary Methods, available online).

TWAS Association Analysis

The pancreatic cancer GWAS summary statistics included 9040
pancreatic ductal adenocarcinoma (PDAC) cases and 12 496 con-
trols of European ancestry from PanScan I–III and PanC4 (11).
Using FUSION and MetaXcan, associations between predicted
expression and pancreatic cancer risk were estimated based on
gene prediction model weights, GWAS summary statistics, and
a SNP-correlation (linkage disequilibrium) matrix (17,22). A false
discovery rate (FDR) corrected P value threshold of less than .05
was used for each analysis. Bonferroni correction for multiple
testing was also used based on the number of tests in each anal-
ysis (Supplementary Figure 2, available online). Finally, we used

Summary-MulTiXcan (SMulTiXcan) (33) to test associations be-
tween predicted gene expression levels and pancreatic cancer
risk with cross-tissue models. Quantile-quantile plots are
shown in Supplementary Figure 3 (available online).

We assessed statistical power by simulating gene expression
and GWAS summary statistics using data from PanScan I–III
and PanC4 (11). Parameters included the number of causal SNPs
for gene expression in the cis region, the fraction of gene expres-
sion variance explained by causal SNPs, and the fraction of phe-
notypic variance explained by gene expression. We varied H2

(h2
g, 0.1, 0.3, and 0.5), causal SNPs (1, 1%, and 10%), and R2 (h2

ge, 0
to 0.001) and recomputed each configuration 100 times to assess
how often the TWAS and GWAS tests were statistically signifi-
cant (TWAS P< 2.27� 10�6 [.05/22k]; GWAS P< 5� 10�8)
(Supplementary Figure 4 and Methods, available online).

Transcriptome Differences and Pathway Analyses for
TWAS-Identified Genes

Transcriptome changes associated with high and low expres-
sion of genes identified by TWAS in the LTG and GTEx pancre-
atic datasets were assessed by comparing gene expression for
samples in the bottom quartile with those in the top quartile of
expression for each gene using EdgeR (34,35). Genes differen-
tially expressed at FDR less than .05 and fold-change greater
than twofold (jlogFCj > 1) were included in pathway analyses
using DAVID (36,37) to identify enrichment in Gene Ontology
(GO) biological processes, GO molecular functions, and Kyoto
Encyclopedia of Genes and Genomes pathways (Supplementary
Methods, available online).

Statistical Analyses

Expression prediction models (LASSO, Elastic Net, BLUP,
BSLMM) were selected for genes with nominally significant
SNP-heritability (cis-h2

g LRT P< .05) and cross-validation
(R2> 0.01). Logistic and linear (LASSO) models were used in
GWAS and TWAS simulations for power estimates. TWAS P val-
ues were determined from calculated TWAS z scores and ad-
justed at FDR less than .05. For increased stringency, nominal
TWAS P values were also compared with a Bonferroni corrected
a threshold. Independence of SNPs and predicted expression
effects on pancreatic cancer risk were tested by conditional
(joint) tests using GWAS and TWAS summary statistics.
Differential expression analyses used an empirical Bayes
method (EdgeR) to estimate gene-level biological variation; ex-
act test P values were corrected for multiple testing by FDR less
than .05. All statistical tests were two-sided.

Results

Gene Expression Prediction Model Building

We performed TWAS by integrating pancreatic-specific and
cross-tissue gene expression prediction models with results
from a recent meta-analysis of pancreatic cancer GWAS data,
performed within the PanScan and the PanC4, including 9040
PDAC cases and 12 496 controls (8,11). Two pancreatic transcrip-
tome datasets from histologically normal pancreatic tissue
samples were used: LTG (n¼ 95) (10) and GTEx v7 (n¼ 174) (27).
Both the GWAS and gene expression datasets included only
individuals of European ancestry. Two complementary TWAS
approaches, FUSION (17) and MetaXcan (16,32), were used to
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build robust gene expression prediction models (see
Supplementary Methods and Table 1, available online). We first
assessed the power of the TWAS as compared with GWAS by
simulating causal SNP-expression-trait models to identify ge-
nome-wide significant signals. We found that TWAS substan-
tially increased statistical power as compared with GWAS,
particularly when multiple causal SNPs underlie signals
(Supplementary Figure 4, available online).

After comparing gene prediction models (prediction perfor-
mance R2 � 0.01) in the three datasets (LTG, GTEx, and com-
bined LTG þ GTEx), we found that each had distinct and
valuable characteristics for TWAS analysis. First, whereas some
gene expression prediction models were common to all three
datasets (FUSION: n¼ 1687; MetaXcan: n¼ 1408), a larger num-
ber was unique to one of these (FUSION: n¼ 658 885, and 1421
models for LTG, GTEx, and LTG þ GTEx, respectively; MetaXcan:
n¼ 648 975, and 1705 models for LTG, GTEx, and LTG þ GTEx, re-
spectively) (Supplementary Figure 2, available online). Second, a
greater number of gene prediction models were observed for
the combined LTG þ GTEx dataset (FUSION: n¼ 5902; MetaXcan:
n¼ 5775) as compared with the individual datasets (2440–4992
models for LTG and GTEx using FUSION and MetaXcan)
(Supplementary Figure 2, available online). Third, among gene
prediction models common to the three datasets, the number of
models with improved performance in the combined LTG þ
GTEx dataset (n¼ 826–1283) was greater than those with poorer
performance (n¼ 342–738) as compared with the individual LTG
or GTEx datasets (Supplementary Figure 5, available online).
Fourth, although gene prediction model performance was
highly correlated between pancreatic tissue datasets (Pearson
r¼ 0.60–0.93) and TWAS approaches (Pearson r¼ 0.87–0.98)
(Supplementary Figure 1, available online), a substantial num-
ber of gene prediction models had improved performance in
FUSION (n¼ 5730) or MetaXcan (n¼ 4267) (Supplementary
Figure 6, available online). Finally, although both the LTG and
GTEx datasets were derived from histologically normal pancre-
atic tissue samples, the former was generated mostly from sam-
ples adjacent to tumors, whereas the latter was generated using
nondiseased tissues from rapid autopsy programs. Based on
these factors, we performed the analysis using each of the three
transcriptome datasets and the two TWAS methods.

Because a large proportion of cis-regulated gene expression
is shared across multiple tissues (38,39), we also took advantage
of publicly available gene expression models generated from 48
different tissues (n¼ 2043–21 422 models per tissue, n¼ 74–421
samples per tissue type; http://predictdb.org/) from 608 individ-
uals of European ancestry (GTEx v7) (27) to discover additional
pancreatic cancer susceptibility genes using PrediXcan (16). The
quantile-quantile plots showed little evidence for inflation of
the test statistics as compared with the expected distribution
(k1000 ¼ 1.004–1.025) (Supplementary Figure 3, available online).

Association Analyses Between Genetically Predicted
Gene Expression and PDAC Risk

We evaluated associations between genetically predicted gene
expression and pancreatic cancer risk by an integrated analysis
using FUSION (17), MetaXcan (16,32), and SMulTiXcan (33)
(Figure 1; Tables 1 and 2). First, using FUSION and the LTG pan-
creas gene expression models (n¼ 2827), we found that geneti-
cally predicted expression of ABO, CFDP1, PNMT, RCCD1, and
PGAP3 was associated with PDAC risk (TWAS: P< 9.11� 10�5,
FDR < .05); in the GTEx (v7) pancreas gene expression models

(n¼ 4992), we identified six additional PDAC risk-associated
genes: KLF5, SUPT4H1, BTBD6, CDK12, SMUG1, and CELA3B
(TWAS: P< 6.96� 10�5, FDR< .05); in the combined LTG þ GTEx
pancreas dataset (n¼ 5902), we identified three additional
genes: SMC2, WDR59, and HEXA (TWAS: P< 6.52� 10�5, FDR <

.05). Of these genes, CELA3B, SMC2, ABO, KLF5, WDR59, CFDP1,
and PNMT were associated after Bonferroni correction (TWAS:
P< 1.77 � 10�5 for LTG, P< 1.00 � 10�5 for GTEx, and P< 8.47 �
10�6 for LTG þ GTEx).

Second, using MetaXcan and the LTG pancreas gene expres-
sion models (n¼ 2440), we observed predicted ABO expression
to be associated with PDAC risk (TWAS: P< 8.07� 10�27,
FDR< .05); in the GTEx (v7) pancreas gene expression models
(n¼ 4763), we identified six additional PDAC risk-associated
genes: PDX1, INHBA, CELA3B, PGAP3, SUPT4H1, and RP11-
888D10.3 (TWAS: P< 6.96� 10�5, FDR< .05); in the gene
expression models (n¼ 5775) trained by the combined pancreas
dataset, we identified two additional genes: SMC2 and PGPEP1
(TWAS: P< 3.67 x 10�5, FDR< .05). Of these genes, CELA3B,
INHBA, ABO, and PDX1 were associated after Bonferroni correc-
tion (TWAS: P< 2.05� 10�5 for LTG, P< 1.05� 10�5 for GTEx, and
P< 8.65� 10�6 for LTG þ GTEx).

Finally, using SMulTiXcan (33) and gene expression models
(n¼ 2043–21 422) trained in 48 different tissues (GTEx v7), we ob-
served associations for predicted SMC2, INHBA, PDX1, and
CFDP1 expression and identified seven additional genes associ-
ated with PDAC risk: TERT, CLPTM1L, BCAR1, ZDHHC11B, RP11-
80H5.9, TMEM170A, and SMC2-AS1 (TWAS: P< 1.39� 10�5,
FDR< .05). Of these, TERT, CLPTM1L, PDX1, CFDP1, and BCAR1
were statistically significant after Bonferroni correction (TWAS:
P< 2.33� 10�6).

Overall, we discovered 25 genes (Figure 1) whose genetically
predicted gene expression was associated with PDAC risk
(FDR< .05), including 14 genes at 11 novel loci—1p36.12
(CELA3B), 9q31.1 (SMC2, SMC2-AS1), 10q23.31 (RP11-80H5.9),
12q13.13 (SMUG1), 14q32.33 (BTBD6), 15q23 (HEXA), 15q26.1
(RCCD1), 17q12 (PNMT, CDK12, PGAP3), 17q22 (SUPT4H1),
18.q11.22 (RP11-888D10.3), and 19p13.11 (PGPEP1) (Table 1)—and
11 genes at six known risk loci (8,11)—5p15.33 (TERT, CLPTM1L,
ZDHHC11B), 7p14.1 (INHBA), 9q34.2 (ABO), 13q12.2 (PDX1),
13q22.1 (KLF5), and 16q23.1 (WDR59, CFDP1, BCAR1, TMEM170A)
(Table 2). Three TWAS genes identified at novel loci (CELA3B,
SMC2, PNMT) and nine at previously reported GWAS loci (TERT,
CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, BCAR1) were
statistically significant after Bonferroni correction (Tables 1 and
2). Genes showing positive and negative effects in different tis-
sues are listed in Table 1 and Supplemental Figure 7 (available
online).

We performed conditional tests at two loci containing more
than one TWAS gene using pancreatic tissue models to deter-
mine if they represented conditionally independent signals. At
chr17q12, three adjacent genes (Table 1; Figure 2A) were identi-
fied by TWAS: PNMT, CDK12, and PGAP3. The TWAS signal for
PNMT and PGAP3 dropped substantially after conditioning the
analysis on predicted CDK12 expression in the GTEx pancreas
dataset (PNMT TWAS P value changed from 5.10� 10�4 to .53
and PGAP3 TWAS P value from 6.96� 10�5 to .09). The GWAS sig-
nal at this locus also dropped markedly after conditioning on
predicted expression of CDK12 (Figure 2A) indicating that CDK12
may explain a large part of the signal at this locus. The gene ex-
pression correlation for the three genes was low (CDK12 and
PNMT, Pearson r¼ 0.09 in both LTG and GTEx) to moderate
(PNMT and PGAP3, Pearson r¼ 0.33 and r¼ 0.27; CDK12 and
PGAP3, Pearson r¼ 0.66 and r¼ 0.29 in the LTG and GTEx
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pancreas datasets, respectively) (Supplementary Table 2, avail-
able online). In contrast, the association with PDAC risk for two
adjacent genes at chr16q23.1 (Table 2; Figure 2B), WDR59 and
CFDP1, appeared largely independent (TWAS P value changed
from 2.54� 10�6 to 5.60� 10�4 for WDR59 and from 8.47� 10�9 to
1.70� 10�6 for CFDP1 in a joint analysis in the combined LTG þ
GTEx pancreatic dataset). The GWAS signal at this locus
dropped dramatically after conditioning on predicted expres-
sion of WDR59 and CFDP1, indicating that genetically predicted
expression of WDR59 and CFDP1 together explain most of the
signal at this locus (Figure 2B). The expression of these two
genes was moderately to strongly correlated in the two datasets
(Pearson r¼ 0.52–0.80) (Supplementary Table 2, available
online).

To determine whether the associations between predicted
gene expression and PDAC risk were independent of the lead
GWAS-identified variants at each locus, we performed condi-
tional analyses adjusting for the most statistically significant
risk variants within 61 Mb of TWAS-identified genes in the
PanScan and PanC4 GWAS datasets. Among the 25 TWAS-
identified genes, the association for three genes at novel loci
(PNMT, CDK12, and PGAP3) and four genes at known loci (TERT,
CLPTM1L, ZDHHC11B, and KLF5) remained statistically signifi-
cant at the Bonferroni corrected P value threshold (P< .05/25
genes, ie, P< .002, Tables 1 and 2), indicating that these genes
may be associated with PDAC risk independently of the GWAS-
identified lead risk variants. Interestingly, at chr5p15.33, sub-
stantial loss of the TWAS signals for both TERT and CLPTM1L
was seen after conditioning on three of the four GWAS-identi-
fied variants that mark independent pancreatic cancer risk sig-
nals at this locus (Table 3; Supplementary Table 3, available
online) indicating that the underlying biology at this locus may
involve both genes.

Transcriptome Changes Associated With High and Low
Expression of Genes Identified by TWAS

To begin unravelling the potential consequences associated
with different expression levels of TWAS-identified genes, we
assessed transcriptome differences in samples in the top vs bot-
tom quartiles of expression for each gene in the GTEx and LTG
pancreatic datasets (see Supplementary Methods and Tables 4
and 5, available online) as previously described (40). As this
analysis may be most relevant for well-expressed genes that are
highly differentially expressed between samples in the top vs
bottom quartile of expression, we focused on CELA3B, which
was highly expressed and with a large difference in median ex-
pression (GTEx ¼ 76%; LTG ¼ 91%) in samples in the top and bot-
tom quartiles (Supplementary Table 6 and Figure 8, available
online). Pathway enrichment analyses for genes differentially
expressed in samples at the top vs bottom quartile of CELA3B

gene expression showed a negative correlation between expres-
sion of CELA3B and inflammatory and immune response genes
(Table 4) indicating that low CELA3B expression may be associ-
ated with an inflammatory state in the pancreas.

Discussion

To identify novel susceptibility loci and putative causally rele-
vant genes for pancreatic cancer development, we integrated
eQTL datasets derived from pancreatic, as well as other tissues,
with the largest currently available pancreatic cancer GWAS
dataset (11) and identified 25 genes whose genetically predicted
expression associated with pancreatic cancer risk. These genes
localize to 17 genomic regions, of which 11 do not overlap with
known PDAC risk loci.

Figure 1. Manhattan plot of the results from the pancreatic cancer transcriptome-wide association study (TWAS). Each point corresponds to an association test be-

tween genetically predicted gene expression for a specific gene and pancreatic ductal adenocarcinoma risk. Genes listed in red are located at novel genomic loci, and

those in black are known pancreatic cancer risk loci. Genes listed in gray did not pass the threshold for multiple testing (false discovery rate < 0.05) in the independent

TWAS analyses. Genes with TWAS P�9.11 � 10�5 in at least one analysis are annotated.
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Several TWAS genes identified at novel loci function in DNA
repair, chromosome organization, and cell division. SMC2
(9q31.1) encodes structural maintenance of chromosomes pro-
tein 2, a core component of the condensin complex, which regu-
lates chromosome organization during mitosis and meiosis and
plays a critical role in single-strand break DNA repair (41–43).
SMUG1 (12q13.13) encodes a base excision repair enzyme (sin-
gle-strand-selective monofunctional uracil-DNA glycosylase 1)
that repairs several DNA-pyrimidine oxidation products, some
of which are mutagenic (44). RCCD1 (15q26.1) encodes RCC1
domain-containing protein 1, a partner of histone H3K36 deme-
thylase KDM8; this complex is important for spindle organiza-
tion, chromosome segregation, and accurate mitotic division
(45). CDK12 (cyclin-dependent kinase 12, 17q12) belongs to the
cyclin-dependent kinase (CDK) family of serine and threonine
protein kinases that regulate transcriptional and posttranscrip-
tional processes, including DNA damage response, splicing, pre-
mRNA processing, development, and differentiation (46,47).
CDK12 is mutated in some tumors and overexpressed in others,
indicating that it may have context-dependent oncogenic and
tumor suppressor functions (46). Decreased genetically predicted
expression of SMUG1, RCCD1, and CDK12 was associated with in-
creased risk of pancreatic cancer, in agreement with their roles
in maintaining genome stability. Conversely, increased SMC2

expression was associated with pancreatic cancer risk, which is
less consistent with its role in cell division and DNA repair but
aligns with reports showing that its expression is regulated by
the transcription factors b-catenin-TCF4 and that it is important
for WNT-mediated cell proliferation in intestinal cells (48).

At chr1p36, another locus not previously reported in GWAS,
genetically predicted CELA3B expression was inversely associated
with risk of pancreatic cancer. This gene encodes chymotrypsin-
like elastase family member 3B and, along with other pancreatic
serine proteases, has a digestive function (49). Pathway enrich-
ment analysis indicated that low expression of CELA3B may be
associated with an inflammatory state in the pancreas, which is
interesting in the light that inflammatory conditions, including
pancreatitis, increase risk of pancreatic cancer (3).

Chr5p15.33 is a well-known multicancer risk locus with mul-
tiple independent signals reported in the TERT-CLPTM1L gene
region for more than 10 different cancers, including pancreatic
cancer (5,10,12,50–53). TERT encodes the catalytic subunit of the
telomerase reverse transcriptase complex, whose major func-
tion is to maintain the ends of our chromosomes and overall
chromosomal integrity (54–58). The CLPTM1L gene, relatively
unknown until a few years ago, is now known to encode a mul-
tipass transmembrane protein that promotes growth and is fre-
quently overexpressed in pancreatic and lung cancers (59–61). It

Table 1. Statistically significant expression–trait associations for genes at loci not previously identified by pancreatic cancer GWAS

Region Gene name

Lead GWAS
variant

(61 Mb)† GWAS P† Approach Training tissue R2,‡ TWAS Z§ TWAS P¶

TWAS P after
conditioning on

lead GWAS
variant#

1p36.12 CELA3B* rs61132601 2.27 � 10�7 FUSION GTEx pancreas 0.06 �3.98 6.89 � 10�5 .08
FUSION Combined pancreas 0.04 �4.62 3.80 � 10�6* .03
MetaXcan GTEx pancreas 0.05 �4.43 9.38 � 10�6* .21
MetaXcan Combined pancreas 0.05 �4.29 1.83 � 10�5 .03

9q31.1 SMC2* rs147699343 8.77 � 10�8 FUSION Combined pancreas 0.04 4.95 7.52 � 10�7* .08
MetaXcan Combined pancreas 0.02 4.93 8.19 � 10�7* .06
SMulTiXcan Cross-tissue 0.02–0.61 �3.34 to 5.35 8.50 � 10�6 .66

9q31.1 SMC2-AS1 rs147699343 8.70 � 10�8 SMulTiXcan Cross-tissue 0.04-0.18 �4.9 to 4.8 1.39 � 10�5 .61
10q23.31 RP11-80H5.9 rs7083351 5.22 � 10�5 SMulTiXcan Cross-tissue 0.02–0.20 �2.21 to 4.4 8.23 � 10�6 .04
12q13.13 SMUG1 rs4759336 1.39 � 10�4 FUSION GTEx pancreas 0.28 �4.04 5.40 � 10�5 .06
14q32.33 BTBD6 rs10638535 2.73 � 10�5 FUSION GTEx pancreas, 0.07 4.06 4.98 � 10�5 .94

FUSION Combined pancreas 0.05 4.00 6.30 � 10�5 .73
15q23 HEXA rs11636684 2.35 � 10�5 FUSION Combined pancreas 0.02 �4.02 5.68 � 10�5 5.31 � 10�3

15q26.1 RCCD1 rs8028409 3.77 � 10�5 FUSION LTG pancreas 0.44 �3.98 6.94 � 10�5 .87
FUSION GTEx pancreas 0.28 �4.04 5.38 � 10�5 .86
FUSION Combined pancreas 0.37 �3.99 6.52 � 10�5 .95

17q12 PNMT* rs12951693 6.17 � 10�7 FUSION LTG pancreas 0.02 4.86 1.20 � 10�6* 4.01 � 10�5

17q12 CDK12 rs12951693 6.17 � 10�7 FUSION GTEx pancreas 0.02 �4.05 5.15 � 10�5 1.37 � 10�3

17q12 PGAP3 rs12951693 6.17 � 10�7 FUSION LTG pancreas 0.10 3.91 9.11 � 10�5 1.44 � 10�3

FUSION GTEx pancreas 0.25 3.98 6.96 � 10�5 2.16 � 10�4

MetaXcan GTEx pancreas 0.24 4.11 3.03 � 10�5 1.03 � 10�4

MetaXcan Combined pancreas 0.18 4.17 2.98 � 10�5 1.04 � 10�4

17q22 SUPT4H1 rs6503868 2.15 � 10�5 FUSION GTEx pancreas 0.08 4.12 3.72 � 10�5 3.32 � 10�3

MetaXcan GTEx pancreas 0.07 4.11 3.90 � 10�5 6.50 � 10�3

18.q11.22 RP11-888D10.3 rs28637808 1.30 � 10�5 MetaXcan GTEx pancreas 0.09 �4.07 4.67 � 10�5 .07
19p13.11 PGPEP1 rs12985909 3.48 � 10�5 MetaXcan Combined pancreas 0.06 �4.13 3.67 � 10�5 .85

*Genes and corresponding TWAS P that are statistically significant after Bonferroni correction for multiple testing in each of the analyses. GTEx ¼ Genotype-Tissue

Expression; GWAS ¼ genome-wide association studies; LTG ¼ Laboratory of Translational Genomics; SMulTiXcan ¼ Summary-MulTiXcan; TWAS ¼ transcriptome-

wide association study.
†The lead GWAS variant and GWAS P value indicates the most statistically significant GWAS variant within 6 1 Mb for each gene listed.
‡R2: model prediction performance.
§TWAS Z: effect size and direction. Effect sizes for SMulTiXcan results in individual tissues are shown in Supplementary Figure 7 (available online).
¶TWAS P: P value from the TWAS for genes that passed the false discovery rate corrected P value � 0.05 in each of the analyses.
#TWAS P values after conditioning on the lead GWAS variant within 6 1 Mb for each gene is shown in the last column.
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Figure 2. Conditional transcriptome-wide association study (TWAS) analysis for loci showing marginally statistically significant associations with multiple genes. A)

Genes at chr17q12 are listed according to chromosomal location in the upper part of the plot with TWAS statistically significant genes shown in green (CDK12). The

Manhattan plot for the genome-wide association studies (GWAS) results is shown in the lower part of the figure with pancreatic cancer GWAS P values before (gray)

and after (blue) conditioning the analysis on imputed gene expression levels for CDK12. Genetically predicted expression of CDK12 appears to explain a large part of the

GWAS-identified signal at chr17q12 in the Genotype-Tissue Expression (GTEx) dataset. B) Similarly, genes at chr16q23 are listed according to chromosomal location in

the upper part of the plot with TWAS statistically significant genes shown in green (WDR59 and CFDP1). The Manhattan plot for GWAS results is shown in the lower

part of the figure with pancreatic cancer GWAS P values before (gray) and after (blue) conditioning the analysis on imputed gene expression levels for WDR59 and

CFDP1. Genetically predicted expression of WDR59 and CFDP1 appears to explain the majority of the GWAS-identified signal at chr16q23.1. Marginal and joint analyses

were performed in the GTEx pancreas dataset for chr17q12 and in the combined Laboratory of Translational Genomics þ GTEx pancreas dataset for chr16q23.1.

Table 3. TWAS results on chr5p15.33 before and after conditional analyses for SNPs that mark independent GWAS risk signals on chr5p15.33

Gene name

TWAS P*

GWAS conditioned on:

rs31490 rs2736098 rs36115365 rs35226131

TERT 5.80 � 10�18 3.37 � 10�4 7.48 � 10�9 9.86 � 10�6 3.88 � 10�16

CLPTM1L 1.48 � 10�16 6.10 � 10�4 4.83 � 10�8 4.85 � 10�5 4.04 � 10�14

ZDHHC11B 3.18 � 10�6 1.56 � 10�5 8.41 � 10�3 3.00 � 10�2 6.50 � 10�3

*Transcriptome-wide association study (TWAS) P values are shown prior to and after conditioning the Pancreatic Cancer Cohort Consortium–Pancreatic Cancer Case-

Control Consortium genome-wide association studies analysis on four independent pancreatic cancer risk signals at chr5p15.33 per Wang et al. (50), Petersen et al. (7),

Wolpin et al. (8), Zhang et al. (10), and Fang et al. (12).
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is important for endoplasmic reticulum stress, apoptosis and
cytokinesis, and KRAS-driven lung cancer (61). Using cross-
tissue prediction models, we identified both TERT and CLPTM1L
as pancreatic cancer TWAS genes with positive and negative
effects, depending on the tissues. This type of pleiotropy for
chr5p15.33 has been previously described by us and others
(5,10,12,50–53).

Some of the genes identified in our study have been reported
in TWAS for breast (RCCD1, KLF5), ovarian cancer (RCCD1), and
type 2 diabetes (RCCD1) (20,22,62,63). KLF5 is located at
chr13q22.1, a pancreatic cancer risk locus in a large, nongenic
region flanked by KLF5 and KLF12 (13). It encodes Kruppel Like
Factor 5, a zinc finger transcription factor frequently overex-
pressed in pancreatic cancer, and is important for Kras medi-
ated pancreatic tumorigenesis in mouse models (64). Because
we have previously shown that DIS3, a gene that encodes a cata-
lytic subunit of the nuclear RNA exosome complex that medi-
ates RNA processing and decay, represents a functional gene at
chr13q22.1 (13), our current findings indicate that KLF5 may also
play a role at this risk locus. None of the suggestive genes
(unadjusted P< .05) reported in a recent but much smaller
TWAS for pancreatic cancer (65) overlap with the genes reported
in our study. Three loci overlap with our recent pathway-based
analysis of pancreatic cancer GWAS data (chr9q31.1: SMC2;
chr15q23: HEXA; and chr17q12: PNMT, CDK12, and PGAP3) and
are suggestive in the GWAS analysis (66).

Although TWAS represents an attractive method to map risk
loci that influence gene expression, this approach has advantages
and disadvantages. Benefits include the reduced multiple testing
burden and nomination of plausible candidate risk genes.
However, identification of trait-associated gene expression differ-
ences by TWAS does not imply causality, and functional studies
are needed to comprehensively determine underlying mecha-
nisms of risk. Furthermore, coregulated genes can present as mul-
tiple associated genes at the same locus, even though only one
gene underlies the signal. Finally, only cis-eQTLs are assessed,
and genes whose genetically regulated gene expression cannot be
predicted using SNPs are not evaluated. In the future, larger tran-
scriptome and GWAS datasets for pancreatic cancer are likely to
further improve statistical power for gene identification using this
approach. Likewise, transcriptome datasets from specific cellular
subtypes within the pancreas, such as acinar and ductal cells,
could also improve future pancreatic cancer TWAS approaches.

In summary, we report 25 genes whose genetically predicted
expression was associated with pancreatic cancer risk

(FDR< .05), including 14 genes at 11 novel genomic loci. Twelve
of these genes remained statistically significant after
Bonferroni correction. Our findings provide new insights into
the genetic basis of pancreatic cancer risk and identify target
genes for future functional studies to thoroughly explore the
mechanistic underpinnings of risk at each locus.
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