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From genetic associations to genes: methods,

applications, and challenges

Ting Qi"*3* Liyang Song %3, Yazhou Guo '#*, Chang Chen "2, and Jian Yang

Genome-wide association studies (GWASSs) have identified numerous genetic
loci associated with human traits and diseases. However, pinpointing the causal
genes remains a challenge, which impedes the translation of GWAS findings into
biological insights and medical applications. In this review, we provide an in-
depth overview of the methods and technologies used for prioritizing genes
from GWAS loci, including gene-based association tests, integrative analysis of
GWAS and molecular quantitative trait loci (xQTL) data, linking GWAS variants
to target genes through enhancer-gene connection maps, and network-based
prioritization. We also outline strategies for generating context-dependent
xQTL data and their applications in gene prioritization. We further highlight the
potential of gene prioritization in drug repurposing. Lastly, we discuss future
challenges and opportunities in this field.

Deciphering genetic associations: the hurdles and complexities

GWAS is an experimental design that has led to tremendous success in uncovering genetic
variants associated with human traits, including diseases [1,2]. Over the past 15 years, the
sample sizes of GWASs and the number of investigated traits have increased rapidly [3-5],
leading to the identification of numerous genetic variants associated with over 5000 human
traits, as reported in the GWAS catalog [6,7]. Most of these variants are common, because
conventional GWASSs are primarily designed to detect such variants. Despite the success of
GWASs in discovering genetic associations, the mechanisms underlying most GWAS loci
remain elusive due to the difficulty in determining the causal variants and genes responsible
for these associations (Figure 1). One major hurdle is the vast number of variants in linkage
disequilibrium (LD) with the lead variants, making it challenging to discern the causal variants
driving the observed associations [8]. Moreover, the fact that most GWAS signals are in non-
coding regions of the genome [9] adds another layer of complexity to establishing a definitive
link between the genetic association signals and genes. Additionally, the complex nature of
gene regulation, along with the potential involvement of multiple genes within a single locus,
further complicates pinpointing the causal genes.

These challenges have stimulated the development of methods and analytical paradigms geared
toward identifying the putative causal genes in GWAS loci. This process, often referred to as gene
prioritization, holds immense potential for deepening our understanding of disease etiology, guid-
ing the development of new therapeutics, and discovering biomarkers for early disease detection
[10]. While experimental approaches, such as gene knockout and knockdown, are essential for
understanding the relevance of genes to specific traits, in this review, we focus primarily on the
statistical methods and related technologies that can be utilized to prioritize genes underlying
common variant association signals identified through GWAS. We outline the key features of
the methods, as well as some of their applications, and discuss the persistent challenges and
emerging opportunities in this field.
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Figure 1. The challenge in prioritizing
) genes underlying genome-wide
GWAS signal association study (GWAS) signals.
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Gene-based association tests

Recent evidence suggests that most complex traits, including diseases, are polygenic and that
trait-associated genetic variants are enriched near genes [11]. Thus, the power of gene discovery
can be enhanced by examining the aggregated effect of a set of variants within and around a
gene. The current common practice for conducting gene-based association tests is to use
GWAS summary statistics, supplemented with LD information from a reference sample
(Figure 2A). This approach is favored due to its adaptability to various study designs and the rel-
ative ease of obtaining GWAS summary statistics, and, thus, has been adopted by several gene-
based test methods, such as Versatile Gene-based Association Study (VEGAS) [12], Pascal [13],
fastBAT [14], Multi-marker Analysis of GenoMic Annotation (MAGMA) [15], and mBAT-combo
[16]. These methods share a common feature of testing the aggregated effect of variants within
a gene locus by summing up their chi-squared statistics (i.e., sum of squared z-statistics), with
or without weighting, but differ in how they assess the statistical significance of the test.

To assess the significance of a gene-based test statistic, VEGAS utilizes reference LD data to
simulate z-statistics of variants within a gene locus under the null hypothesis, while preserving
the correlations among them, and then compares the observed gene-level sum of squared z-
statistics to those obtained from simulations [12]. Under this method framework, the precision
of the P value is capped by the number of simulations, and obtaining high-precision P values re-
quires considerable computational resources. This has led to the development of methods that
use numerical approaches to evaluate the distribution of a quadratic form of multivariate normal
variables, denoted as T = z 1z, with z being a vector of GWAS z-statistics for a set of variants
and | being an identity matrix. These methods allow for the computation of a gene-level P value
without the need for running simulations or permutations. Examples of these methods include
Pascal [13], fastBAT [14], and MAGMA [15]. The recently developed mBAT-combo [16] method
further improves power in effectively handling masking effects (i.e., situations where the product
of the effects of two variant alleles is in the opposite direction to their LD correlation).
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Figure 2. Overview of gene prioritization methods. Abbreviations: caQTL, chromatin accessibility quantitative trait loci;
eQTL, expression quantitative trait loci; GWAS, genome-wide association study; LD, linkage disequilibrium; mQTLs, DNA
methylation quantitative trait loci; pQTLs, protein abundance quantitative trait loci; sQTLs, splicing quantitative trait loci;
xQTLs, molecular quantitative trait loci.
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Genes identified by gene-based association tests can serve as valuable resources for subse-
quent analysis, such as inferring tissues and cell types relevant to a trait of interest [17,18]. Despite
the successful applications of gene-based association tests, several challenges remain. First,
these tests aggregate variant-level association signals into gene-level scores without explicitly
considering the biological mechanisms underlying the associations, which may limit the interpret-
ability of the findings. Second, gene-based association tests may not fully capture the effects of
distal regulatory elements (e.g., those located far from their target genes, possibly millions of
base pairs away or even on different chromosomes), because these tests typically focus on var-
iants within or close to the gene boundaries, potentially resulting in a loss of power [19].

Integration of GWAS and molecular QTLs to identify putative causal genes

The observation that most GWAS signals are in noncoding regions of the genome implies that ge-
netic variants may influence traits through gene regulation. Advances in high-throughput technol-
ogies have enabled the generation of extensive genome-wide molecular phenotype data, greatly
facilitating the identification of genetic variants associated with molecular phenotypes (i.e.,
xQTLs), such as expression QTLs (eQTLs), DNA methylation QTLs (mQTLs), splicing QTLs
(sQTLs), chromatin accessibility QTLs (caQTLs), and protein abundance QTLs (pQTLs). Several
extensive xQTL resources have been generated, and their summary statistics have been made
available to the research community (Table 1). The integration of GWAS and xQTL data can
enhance our understanding of whether genetic variants influence complex traits by regulating
molecular phenotypes, which not only facilitates the identification of putative causal genes, but

Table 1. Summary of commonly used xQTL data sets®

Study Sample size Tissue or cell type Refs
caQTL

Kumasaka et al. 100 Lymphoblastoid cell line [185]
Bryois et al. 272 Brain [186]
hQTL

BLUEPRINT 200 Three immune cell types [187]
ROSMAP 561 Brain [188]
mQTL

GTEx 424 Nine tissues [189]
Brain-mMeta 1160 Brain [66]
LBC+BSGS 1980 Blood [40]
GoDMC 27750 Blood [190]
eQTL and sQTL

eQTLGen (eQTL) 32 000 Blood [30]
GTEx (eQTL and sQTL) 832 49 tissues [24]
OneK1K (eQTL) 982 14 blood cell types [100]
BrainMeta (eQTL and sQTL) 2865 Brain [41]
pQTL

INTERVAL 3301 Plasma [191]
SCALLOP 30 931 Plasma [192]
deCODE 35 559 Plasma [193]
UKB_PPP 35571 Plasma [194]

@Abbreviation: hQTL, histone modification QTL.
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also provides valuable insights into the molecular mechanisms underpinning the genetic associ-
ations. Such information can also guide researchers toward potential targets for functional valida-
tion and the development of therapeutic strategies. Moreover, the integrative analysis may
uncover genes where nearby genetic variants do not meet the genome-wide significance thresh-
old with the current sample size but attain genome-wide significance when examined with a larger
sample size [20]. Recognizing the potential and benefits provided, a variety of methods have been
developed for integrating GWAS and xQTL data, which can be broadly classified into three
categories: transcriptome-wide association studies (TWASs), colocalization analysis, and
Mendelian randomization (MR).

Transcriptome-wide association studies

The concept of TWAS typically refers to the analysis that associates the expression levels of
genes across the transcriptome with a trait of interest. In the context of gene prioritization, it refers
specifically to the analysis that links genetically predicted gene expression levels with a trait. Var-
ious TWAS methods have been developed, including PrediXcan [21] and FUSION-TWAS [22]
among others, each with its distinct methodological design. PrediXcan uses an elastic net regres-
sion model [23] to estimate variant weights from individual-level genotype and gene expression
data. These weights are subsequently used to predict gene expression levels in a GWAS cohort,
which are then assessed for their associations with a trait. PrediXcan requires individual-level ge-
notype and phenotype data in the GWAS cohort, which are often unavailable, particularly for
GWAS meta-analyses. FUSION-TWAS circumvents this problem by performing predictions
based on GWAS summary statistics. Specifically, it estimates the z-score of association between
a genetically predicted gene expression level and a trait as a linear combination of variant-trait z-
scores multiplied by variant-gene association weights. FUSION-TWAS uses individual-level ge-
notype and gene expression data, which can be obtained from a reference panel, such as the
Genotype-Tissue Expression (GTEX) [24], to estimate these weights by multiple strategies,
such as the Bayesian sparse linear mixed model (BSLMM) [25].

Given that genetic variants used to predict gene expression in TWAS are often enriched in regu-
latory elements, methods such as EpiXcan [26] and MOSTWAS [27] have been developed to im-
prove the prediction accuracy of gene expression by incorporating functional annotation data,
thereby boosting the power of detecting gene—trait associations. EpiXcan integrates epigenomic
annotation data (e.g., DNA methylation and histone modifications) with cis-eQTL data to obtain
priors that reflect the likelihood of genetic variants being involved in gene regulation. It then
uses an adaptive mapping approach to rescale these priors and leverages a weighted elastic
net model for gene expression prediction. When applied to 58 traits and 14 eQTL data sets,
EpiXcan exhibited an increase of over 18% in the number of gene—trait associations, compared
with PrediXcan. MOSTWAS improves the prediction accuracy by incorporating genetic predic-
tors of mediating biomarkers (e.g., DNA methylation and miRNAs) of gene expression as well
as distal eQTLs mediated by local biomarkers into the prediction model.

While TWAS methods have shown promising results in prioritizing genes for complex traits
[28,29], they do have several challenges. First, the accuracy of the gene expression prediction
model, which is fundamental to the performance of the TWAS methods, depends on various fac-
tors, including training sample size, heritability of each gene, and homogeneity between the tran-
scriptome reference sample and testing sample. Most existing TWAS methods utilize genetic
effects on gene expression estimated from relatively small reference panels, limiting the number
of genes that can be accurately predicted. Second, some TWAS methods, such as FUSION-
TWAS and PrediXcan, require individual-level genotype and gene expression data, making
them inapplicable to eQTL summary data from large-scale meta-analyses, such as eQTLGen
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[30]. One solution is to train the gene expression prediction model using summary-level eQTL
data, as implemented in the recently developed method, OTTERS [31]. Third, significant TWAS
signals can arise when two distinct causal variants, one affecting gene expression and the
other influencing the trait, are in LD with each other, resulting in the prioritization of noncausal
genes [32]. Moreover, the correlation of predicted expression among genes, which could be
due to shared or distinct eQTLs in LD, may introduce the risk of identifying irrelevant genes [32].

Colocalization

Colocalization analysis commonly refers to a statistical analysis used to ascertain whether the ge-
netic association signals from two traits overlap within a certain genomic region due to shared
causal variant(s). This approach has been extensively utilized to prioritize genes from GWAS
loci by scrutinizing the colocalization of GWAS and eQTL signals. Among the colocalization
methods is the Regulatory Trait Concordance (RTC) method, which is an empirical approach
based on the assumption that, if a GWAS signal and an eQTL signal are driven by the same
causal variant, the eQTL signal would be markedly reduced or even eliminated after correcting
the expression phenotype for the GWAS variant [33]. QTLMatch uses a likelihood ratio test to
identify genes for which the lead GWAS and eQTL variants are colocalized due to a shared causal
variant [34]. However, both methods require individual-level data, which restricts their widespread
application. To overcome this problem, COLOC [35] was developed, which only requires GWAS
and eQTL summary statistics, even without the need for reference LD. COLOC uses an approx-
imate Bayes factor to calculate the posterior probabilities of a variant being causal for two traits.
Due to its flexibility with input data, COLOC has been widely utilized to test the colocalization of
GWAS and eQTL signals.

COLOC assumes that a single causal variant underlies the colocalized GWAS and eQTL signals.
While this assumption is convenient, it is often unrealistic. When this assumption does not hold,
COLOC tends to underestimate the true posterior probability of colocalization, leading to a loss
of power [36]. To account for the possibility of multiple causal variants within one locus, eQTL
and GWAS Causal Variant Identification in Associated Regions (eCAVIAR) utilizes a fine-
mapping approach to identify putative causal variants for both GWAS and eQTL signals [37]. It
then uses a probabilistic model to estimate the colocalization posterior probability for each fine-
mapped variant, calculated as the product of the probabilities of the variant being causal for
both the GWAS and eQTL signals. However, this approach leads to an exponentially increasing
computational load as the number of assumed causal variants increases. Of note, both eCAVIAR
and COLOC require users to specify priors of the colocalization models. If the priors are severely
mis-specified relative to the true models, this could result in an inflated type | error rate. One so-
lution to this issue is to estimate priors from data, which has been shown to improve the robust-
ness of the colocalization analysis [38]. Moreover, colocalization methods do not provide the
direction or magnitude of the effect of a prioritized gene on the trait, which could be instrumental
in inferring the molecular mechanisms underlying the genetic association signals and advancing
the prioritized genes toward drug development or repurposing. Additionally, the colocalization
methods do not distinguish between horizontal pleiotropy (i.e., when a genetic variant regulates
a trait and a gene independently) and causality (i.e., when a genetic variant affects a trait through
gene regulation).

Mendelian randomization

MR [39] is a statistical method that leverages one or multiple genetic variants as instrumental var-
iables (IVs) to examine a causal relationship between an exposure and an outcome. This method-
ological framework has been applied or repurposed to test for causal or pleiotropic associations
between molecular phenotypes and a trait of interest, or even between molecular phenotypes.
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MR was initially developed based on a single sample where both exposure and outcome are
measured. It has since been extended to accommodate the scenario where exposure and out-
come are measured on two independent samples, a concept known as two-sample MR. This ex-
tension has remarkably broadened the application of MR, including its use for gene prioritization.
Summary-data-based Mendelian Randomization (SMR) [20] is a variant of the two-sample MR
method that integrates GWAS and eQTL summary data to identify genes, the expression levels
of which are associated with a trait through shared genetic effects. Although originally developed
for eQTL data, SMR has been utilized with other types of xQTL data [40,41]. The original version
of SMR only uses the lead cis-xQTL variant as IV, and it has since been extended to SMR-multi to
accommodate the potential presence of multiple ¢is-xQTL causal variants [40]. SMR-multi uses
multiple, typically correlated variants as Vs and a set-based test, akin to the gene-based associ-
ation test described in the preceding text, to combine the SMR test statistics across multiple IVs,
with their correlations accounted for [40].

When only one genetic variant or multiple correlated variants in alocus are used as IVs, MR often
cannot distinguish between the causality model (where the effect of a causal variant on the out-
come is mediated through the exposure), the pleiotropy model (where the causal variant influ-
ences the exposure and outcome through separate paths), or even the linkage model (where
two different causal variants independently affect the exposure and outcome). This situation is
common, particularly when only cis-xQTL data are available. This issue is not exclusive to MR
methods but is a common problem for most methods that integrate GWAS and xQTL data to es-
tablish associations between molecular phenotypes and traits, including TWAS. Compared with
the causality and pleiotropy models, the linkage model has the least biological relevance. To reject
the linkage model, the HEterogeneity In Dependent Instruments (HEIDI) method was developed
and included as part of an SMR analysis to test whether the overlapping GWAS and xQTL signals,
as detected by SMR or SMR-mullti, are driven by the same set (i.e., the pleiotropy or causality
model) or distinct (i.e., the linkage model) sets of causal variants [20]. In practice, when HEIDI
analysis is not feasible for reasons such as the lack of signed xQTL effects, COLOC can be
used in combination with SMR or SMR-multi to reject the linkage model.

Even if a GWAS signal is known to be colocalized with an xQTL signal due to the same set of
causal variants, it remains challenging to further distinguish between the causality and pleiotropy
models. One possible solution is to perform an MR analysis with multiple independent genetic
variants, such as those located on different chromosomes. A comprehensive review of these
multi-IV MR methods can be found elsewhere [42]. These include MR-inverse variance weighted
(IVW) [43], weighted median [44], weighted mode-based estimate [45], heterogeneity test [46],
GSMR [47], and MR-Egger [48]. The use of multiple independent variants can help mitigate po-
tential confounding from pleiotropy, thereby improving the robustness of causal inference, al-
though the degree of this robustness varies across methods [49]. Nevertheless, these methods
have been used to identify putative causal genes associated with complex traits. For instance,
Zheng et al. utilized the MR-IVW method to estimate the causal effects of 66 proteins, which
have both cis- and trans-pQTLs, on a range of traits [50]. Additionally, during the coronavirus
disease 2019 (COVID-19) pandemic, multiple studies applied multi-IV MR approaches to integrate
eQTL and pQTL data into GWAS to identify potential therapeutic targets for COVID-19, leading to
the discovery of several promising targets, including OAS7 and IFNAR2 [51,52].

Collectively, the MR approaches provide a unique toolkit for gene discovery and causality assess-
ment. However, for a valid causal inference, genetic variants used as Vs must satisfy three
conditions: (i) they are strongly associated with the exposure; (i) they are not associated with con-
founders; and (iii) they are not associated with the outcome other than through the exposure.
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Violation of any of these assumptions can lead to a biased result. Thus, we recommend adhering
to a stringent threshold (e.g., 5e-8) for IV selection and resisting the temptation to lower this
threshold to include more Vs, thereby ensuring that the first assumption is always valid. More-
over, it has been demonstrated that all MR methods may exhibit bias in the presence of strong
pleiotropic effects [49], violating the third assumption. As such, adopting a triangulation strategy,
such as by utilizing multiple MR methods, is advisable. Significant discrepancies in MR estimates
across different methods could indicate biases.

Despite the widespread use of the integrative methods discussed in the preceding text [53], these
methods still pose several challenges. One such challenge is co-regulation, where multiple genes
or molecular phenotypes are correlated because they are regulated by the same, or distinct but
correlated, causal variants. This can lead to correlated effects of genes on traits, making it difficult
to pinpoint the putative causal gene(s). While methods such as COLOC and HEIDI can, to some
extent, identify scenarios where two genes have distinct but linked causal variants, they cannot
identify cases where genes share the same causal variant(s). Fine-mapping of Causal Gene
Sets (FOCUS) [54] and Transcriptome-wide MR (TWMR) [55] have attempted to address this
issue by jointly analyzing multiple genes in a region, but they may not fully account for LD between
eQTLs of a noncausal gene and GWAS causal variants. Additionally, many xQTL studies are
based on samples from a single or limited number of tissues, which may not be relevant to the
trait of interest. Thus, it is important to consider factors, such as tissue specificity, developmental
stage, and environmental context, when validating findings derived from these methods.

Integration of GWAS and xQTL data from multiple tissues or ‘omics layers
Integration of GWAS and eQTL data from multiple tissues

While gene expression levels are known to vary in different tissues, genetic factors affecting gene
expression in ¢is are largely shared across tissues [24]. For instance, the correlation of cis-eQTL
effects between the brain and blood is estimated to be >0.70 [56]. When eQTL data from multiple
tissues are available, one common practice is to either analyze the tissue most relevant to the trait
or analyze each tissue separately. However, this approach could limit the power of the analysis
due to the small to modest eQTL sample sizes available for most tissues, especially those that
are difficult to acquire.

Recognizing the shared eQTL effects across tissues, one strategy to enhance the power of de-
tecting gene-trait associations is to perform an integrative analysis of GWAS data with eQTL
data from multiple tissues, as implemented in MultiXcan and S-MultiXcan [57]. While MultiXcan
requires individual-level GWAS data and S-MultiXcan only needs summary-level GWAS data,
both methods still necessitate individual-level genotype and gene expression data of the expres-
sion training set. The multi-tissue analysis is achieved by regressing the principal components
(PCs) of predicted expression across tissues on the trait. This strategy is computationally efficient
and improves power over PrediXcan, but complicates the interpretation of the effect size and di-
rection for each PC association. Unified Test for Molecular Signatures (UTMOST) applies a meta-
analysis framework to combine single-tissue TWAS results from multiple tissues, which improves
the power to detect trait-associated genes and also allows the identification of gene—tissue pairs
that exhibit the strongest associations with the trait of interest [58]. Additionally, Joint-tissue
Imputation (JTI) is an extension of PrediXcan. It uses a Bayesian hierarchical model to integrate
multi-tissue transcriptomic data and atlases of regulatory elements, which improves the accuracy
in predicting gene expression, thereby enhancing the power of identifying gene—trait associations
in each tissue [59]. Colocalization and Fine-mapping in the Presence of Allelic Heterogeneity
(CAFEH) is another Bayesian approach that integrates genetic association data from multiple
traits (including tissues) and LD information to improve the identification of putative causal variants
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shared by multiple traits [60]. By leveraging the widespread allelic heterogeneity in genetic regu-
lation and accounting for the tissue specificity of cis-eQTLs, CAFEH enables the prioritization of
both the putative causal genes and the relevant tissues underlying GWAS loci.

Integration of GWAS and xQTL data from multiple ‘omics layers

Despite extensive efforts in eQTL mapping, the fraction of GWAS signals explained by eQTLs re-
mains modest [61,62], and the proportion of trait heritability mediated by eQTLs has been estimated
to be aslow as ~10% [63]. Gene regulation is a complex process involving multiple layers of control,
including but not limited to, chromatin accessibility, epigenetic modifications, RNA splicing, and
translation. The increasing availability of summary statistics for various types of xQTL, such as
caQTL, mQTL, and pQTL, offers an opportunity to gain deeper insights into the molecular mecha-
nisms underlying genetic associations. Even when xQTL data from multiple ‘omics levels are avail-
able, one common practice is to analyze each type of xQTL separately with the GWAS data to
identify molecular phenotypes associated with the trait and then to analyze pairwise xQTL data
sets to identify associations between molecular phenotypes (e.g., associations between gene ex-
pression and DNA methylation) [40]. However, the number of tests required for such an analysis in-
creases quadratically with the increase in the number of ‘omics layers. When considering all potential
combinations of ‘omics layers, this results in an exponential increase, not only elevating computing
costs, but, more importantly, also exacerbating the multiple testing burden. One solution is to fit the
GWAS and multi-xQTL data in a joint model, as in the methods described in the following sections.

Multiple-Trait COLOC (MOLQOC) is an extension of COLOC that can integrate GWAS summary
data with xQTL data from multiple ‘omics layers simultaneously to uncover loci where the
GWAS signal is colocalized with one or more xQTL signals due to a shared causal variant [64].
Analyses with schizophrenia GWAS and brain eQTL and mQTL data demonstrated that
MOLOC using both xQTL data sets resulted in a 1.5-fold increase in gene discovery, compared
with using only eQTL data [64]. However, when analyzing more than four phenotypes, MOLOC
becomes computationally impractical due to the exponential growth in the number of causal con-
figurations with each additional phenotype. This computational hurdle can be circumvented by
computing the posterior probability of colocalization using an approximate approach, as in
Hypothesis Prioritization for Multi-Trait Colocalization (HyPrColoc) [65], which has enabled simul-
taneous colocalization analysis of a vast number of complex traits. However, when applying
HyPrColoc to multi-omics xQTL data, it is necessary to consider more complicated situations,
such as diverse coverages of molecular phenotypes across the genome and multiple sites per
molecule within alocus [66]. Primo is another method of this kind, but it accommodates scenarios
where multiple causal variants exist in a locus [67]. By re-estimating the effects of GWAS variants
conditional on other lead xQTL variants, Primo mitigates spurious associations due to LD, albeit
at the cost of reduced statistical power. Omics PIEiotRopic Association (OPERA) is an extension
of SMR under the Bayesian framework, which enables joint analysis of GWAS summary statistics
and xQTL summary statistics from multiple ‘omics layers [66]. It can effectively control the false
discovery rate (FDR) while maintaining a high detection power for various patterns of associa-
tions, both between molecular phenotypes and the trait of interest, and among molecular pheno-
types. As with the HEIDI test in the SMR analysis, a multi-exposure HEIDI test has been
developed and included as part of the OPERA analysis to filter out associations due to the linkage
model. Applying OPERA to summary-level GWAS data for 50 complex traits and xQTL data from
seven ‘omics layers revealed that 51% of the GWAS signals were shared with at least one xQTL,
approximately half of which were not eQTLs.

Beyond the integrative analysis approaches based on conventional statistical frameworks,
machine-learning approaches, such as Locus to Gene (L2G) [68], have also been developed
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for gene prioritization. The L2G model was trained using 445 gold-standard genes, along with a
large collection of fine-mapped genetics and functional genomics data, including transcriptomic,
proteomic, and epigenomic data, as well as disease-molecular trait colocalization analysis results
across 92 cell types and tissues. The L2G score generated by the model represents the likelihood
of a gene being causal for a specific trait. However, a primary limitation of this approach is the re-
quirement for a sizable set of high-quality gold-standard genes for effective model training, and
each gold-standard source could introduce biases.

Linking fine-mapped GWAS variants to their target genes

Recent advancements in statistical fine-mapping techniques have substantially improved
our ability to identify putative causal variants [8,69-73]. However, it remains challenging
to establish direct links between fine-mapped variants and their target genes, because
most variants identified through GWAS are noncoding and do not necessarily regulate
the nearest gene [9]. For instance, variants in enhancer regions, which regulate gene ex-
pression by interacting with the transcription machinery at the promoter, can be found at
various distances from the target gene [74,75]. Approximately 77% of blood trait GWAS
loci contain at least one fine-mapped variant that overlaps with an enhancer region [76].
Hence, developing high-precision enhancer—promoter interaction maps can facilitate gene
prioritization [74] (Figure 2B).

Chromosome conformation capture techniques

Mapping spatial contacts between chromatins has the potential to reveal the target genes of
candidate cis-regulatory elements (cCREs). This is possible because chromatin fibers fold into
higher-order structures, allowing distant DNA fragments to come into proximity in 3D space.
High-throughput detection of chromatin interactions has been achieved by chromosome confor-
mation capture (3C) technigues, such as Hi-C [77] and chromatin interaction analysis by paired-
end tag sequencing (ChlA-PET) [78]. Promoter capture Hi-C (PCHI-C) [79] is a specialized Hi-C
method designed for identifying interactions involving promoters throughout the genome. It has
been used to map cCREs to their target genes in various tissue types and cell lines. Notable exam-
ples include studies conducted by Jung et al. [80] and Javierre et al. [81], which utilized PCHi-C to
map the interactomes involving ~18 000 promoters in 27 different human tissues and cell types,
and ~30 000 promoters in 17 hematopoietic cell types, respectively. Jung et al. further used the
chromatin interaction data to infer target genes for 27 325 noncoding variants associated with
2117 physiological traits and diseases [80]. However, all the 3C-based methods operate on the as-
sumption that spatial proximity reflects functional interaction, an assumption that may not always
hold. Additionally, the relatively low resolution of 3C techniques, typically several kilobases, might
limit their precision in associating individual CCREs with specific target genes or in distinguishing as-
sociations between proximal cCREs and gene promoters [80]. Moreover, these techniques have
only been applied to a limited range of human tissues and cell types, partly due to the high costs
associated with them.

Inferring chromatin interactions through associations between epigenomic features
Epigenomic features, such as chromatin accessibility and histone modifications, can be
harnessed to identify cCRE—gene links by assessing the correlation of chromatin accessibility
or activity between pairs of cCREs. One such approach, Cicero, uses a graphical Least Absolute
Shrinkage and Selection Operator (LASSO) model to identify co-accessible pairs of cCREs
across bins of related cells within a cell type [82], and has been widely used to associate
cCREs with putative target genes in specific cell types [83,84]. For example, in brain cell types,
Cicero identified 2.82 million co-accessible links between cCREs using single cell chromatin ac-
cessibility data, with ~20% confirmed as physical interactions [84].
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While promoter accessibility is often used as a proxy for gene activity in co-accessibility analy-
sis, it may not always accurately reflect gene activity due to the complexity of gene regulation.
To address this issue, a new set of methods has been developed to identify '‘co-activity' be-
tween the activity of cCREs and gene expression [85,86]. One notable effort is the Epigenome
Integration across Multiple Annotation Projects (EpiMap) [75], which incorporates data gener-
ated by multiple assays, including RNA-sequencing (RNA-seq), ChiP-sequencing (ChlP-seq),
and DNase | hypersensitivity sequencing (DNase-seq), in various tissues and cell types to
predict enhancer—gene links. The prediction is based on the Pearson correlation between
gene expression and the histone mark activity of nearby enhancers within 1 Mb. An
XGBoost classifier was trained on the positive set of valid links against their paired negative
links, using precomputed correlations and the distance to the transcription start site (TSS)
as features. EpiMap has predicted 3.3 million tissue-specific enhancer—gene links, with
each gene associated with an average of 13 enhancers and each enhancer linked to
~1.5 genes, typically at a median distance of 42 359 bp. However, the correlation analysis
approaches have limitations. They can identify associations that do not necessarily reflect
direct cis-regulatory interactions, but instead indicate associations driven by confounding
factors. Furthermore, these analyses often rely on individual-level data, which are typically
available only in small samples.

The aforementioned integrative methods can also be harnessed to detect associations between
epigenomic features due to shared genetic factors, using only xQTL summary data. One such ex-
ample is the application of the SMR & HEIDI method [20] to mQTL data for predicting chromatin
interactions [87], where CpG sites in a gene promoter are used as hooks to detect their pleiotro-
pic associations with other CpG sites. Integrating the predicted chromatin interactions with
GWAS summary data highlights links among CpG sites and genes associated with complex
traits. This approach offers several advantages. Unlike experimental assays, such as Hi-C and
PCHI-C, this approach is cost-effective, because it reuses data from experiments not originally
designed for this purpose. Furthermore, in contrast to correlation analysis methods, it utilizes a
genetic model to perform an MR analysis, meaning that the detected associations are unlikely
to be confounded by nongenetic factors.

Activity-by-contact model

Even when an enhancer is inactive, it can still maintain close physical contact with the promoter
of a gene [88], indicating that such contact, while critical, is only part of the mechanism for un-
derstanding their functional interaction. This led to the development of the activity-by-contact
(ABC) model to link enhancers to gene promoters [89], assuming that the regulatory effect of
an enhancer on a gene depends on both the activity of the enhancer and its physical contact
with the promoter of the gene. The ABC score for an enhancer—gene pair is calculated
by the product of the activity of the enhancer (measured using DNase-seq and H3K27ac
ChlP-seq data) and its contact frequency with the promoter of a gene (measured using chro-
matin interaction assays, such as PCHi-C), which is then normalized by the sum of such prod-
ucts for all elements within a specified genomic distance from the gene, typically within 5 Mb.
This method was shown to be effective in predicting enhancer—gene relationships in a cell
type-specific manner, offering a valuable tool for understanding the functional implications of
genetic variants. For instance, in an analysis involving 72 complex traits, the ABC model linked
5036 fine-mapped GWAS signals to 2249 unique genes, including 577 genes that appear to
influence multiple traits through variants in enhancers that function in different cell types [90].
The ABC model requires high-quality chromatin interaction data to quantify contact frequency.
When such data are unavailable, the physical distance between the enhancer and promoter
can serve as a proxy [90].
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CRISPRI-based enhancer screening

Enhancer—gene links can be experimentally assessed through clustered regularly interspaced
short palindromic repeats (CRISPR) screening. Using CRISPR interference (CRISPRI) techniques,
it is possible to simultaneously perturb the activity of numerous regulatory elements, and examine
the subsequent impact on gene expression in a high-throughput manner. One typical example is
the multiplex, eQTL-inspired framework introduced by Gasperini et al. [91]. This approach uses
random combinations of CRISPRi/dCas9-mediated perturbations in a multitude of cells, followed
by single-cell (sc)RNA-seq. By utilizing dCas9-KRAB, 5920 candidate enhancers in K562 cell
lines were perturbed, and the effects of these perturbations were measured by profiling
254 974 single cell transcriptomes, resulting in the identification of 470 high-confidence
enhancer—gene pairs. Similarly, Morris et al. focused on characterizing the functional effects of
GWAS variants [76]. They used CRE-silencing CRISPRI perturbations to inhibit cCREs, derived
from fine-mapped variants for blood traits, in the human erythroid progenitor cell line K562. By
targeting 543 variants across 254 loci and generating comprehensive scRNA-seq data, they
identified cis-target genes for 134 cCREs, most of which are the closest gene. The integration
of CRISPRI-based enhancer screening with scRNA-seq facilitates accurate identification of puta-
tive causal genes, even though these experiments are technically complex, involving multiple
steps, such as guide RNA design, cloning, transfection or transduction, cell sorting, and
scRNA-seq. Additionally, while these methods are feasible for immortalized cell lines, it is crucial
to extend them to other cell lines and primary cells for the next stage of target gene identification
and characterization for diverse complex traits.

Network-based gene prioritization

Genes or proteins that interact with each other often participate in similar cellular functions and
contribute to related organismal traits. By leveraging the principle of guilt-by-association, molec-
ular networks have proven useful in predicting the function or trait relevance of human genes. In
the context of GWAS, these networks can enhance gene discovery by using genes identified
from post-GWAS analyses as seeds to identify additional trait-associated genes. Various algo-
rithms have been developed for this purpose, including similarity-based and propagation-
based algorithms. These algorithms can be integrated with diverse types of network, such as
protein—protein interaction (PPI), pathway and gene co-expression networks.

Similarity-based methods

Similarity-based algorithms are commonly used to nominate genes with similar functions or those
within the same pathways. One such method is NetWAS 2.0 [92,93]. In this approach, significant
genes identified from gene-based association analysis (i.e., VEGAS) are considered positive
cases, while randomly sampled nonsignificant genes serve as negative cases. The weights of la-
beled genes to all genes in the functional networks across various human tissues and cell types
are used as features. NetWAS 2.0 then trains support vector machine (SVM) classifiers to en-
hance the identification of gene—trait associations. When applied to Alzheimer's disease (AD),
NetWAS 2.0 successfully identified genes associated with axon plasticity that connect amyloid-
beta (AB), aging, and tau protein in susceptible neurons, by leveraging functional networks spe-
cific to seven types of human neuron. Data-driven Expression Prioritized Integration for Complex
Traits (DEPICT) is another versatile method for gene prioritization, gene set enrichment, and tissue
enrichment [94]. It utilizes 14 462 reconstituted gene sets derived from 77 840 publicly available
expression microarrays. Each gene set contains z-scores representing the membership strength
of each gene within the set. The gene prioritization algorithm in DEPICT involves two steps. First, it
identifies genes (g) in the trait-associated loci, defined as genes overlapping variants with LD >0.5
to alead variant. Next, it assesses the correlation of each gene with the remaining genes in g across
the reconstituted gene sets. Genes with stronger overall correlations within g are prioritized more
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highly. Another recently developed similarity-based method, Polygenic Priority Score (PoPS), uti-
lizes a ridge regression framework to prioritize genes from GWAS [95]. It utilizes gene-level associ-
ations computed from GWAS summary statistics using a gene-based test tool (i.e., MAGMA) to
learn joint polygenic enrichments of gene features derived from cell type-specific gene expression,
pathways, and PPIs. To nominate putative causal genes, PoPS assigns a priority score to every
protein-coding gene according to these enrichments.

Propagation-based methods

Gene networks can be represented and analyzed as graphs, denoted as G = (V, E), where
nodes V represent genes or proteins and edges E represent interactions between genes or pro-
teins. Prioritization methods based on network propagation utilize the network topology to cap-
ture the flow of influence or information through the network when ranking genes. Initially, a set of
known trait-associated genes obtained through post-GWAS analyses serves as the seed genes
to discover additional genes that are closely connected to these seed genes (Figure 3D). One
widely used propagation-based algorithm is the Random Walk with Restart (RWR) [96]. It calcu-
lates the steady probabilities of each gene or protein being visited based on the network proxim-
ity, with a higher probability indicating a closer similarity to the seed gene and a stronger trait
association. For example, Priority index (Pi) is a scoring system for drug target discovery that
uses the RWR algorithm [97]. Specifically, Pi begins by identifying seed genes prioritized from
GWAS based on genomic predictors, such as physical distance, chromatin conformation, and
eQTLs. The RWR algorithm is then used to identify non-seed genes based on their PPl network
connectivity to seed genes. This approach has identified both existing therapeutic targets and un-
explored potential targets for 30 immune-related traits. Another method, the integrative risk gene
selector (iRIGS), integrates multi-omics data and RWR in a Bayesian framework [98] to identify
plausible trait-associated genes. As an extension of the RWR, Personalized PageRank (PPR) al-
lows for the incorporation of personalized probabilities to a specific set of nodes. This increased
flexibility has led to the widespread application of PPR in network-based gene prioritization. For
instance, Barrio-Hernandez et al. utilized PPR to augment a pool of risk genes prioritized from
GWAS for 1002 traits. This algorithm effectively recapitulated known disease genes or drug tar-
gets and identified groups of genes connected to the trait-associated genes but exhibiting weak
GWAS signals [99].

In summary, network-based gene prioritization methods facilitate the discovery of trait-associated
genes that may be masked due to weak GWAS signals. Despite their advantages, these methods
have some limitations. First, network-based methods rely on the ‘guilt-by-association’ principle,
which means they may fail to uncover trait-associated genes that lie outside currently known func-
tional networks [81]. Second, algorithms such as RWR tend to prioritize genes that are closely con-
nected to the seed genes, often resulting in the prioritization of hub genes involved in multiple
networks, even though they may not be causal genes. Third, existing gene networks are primarily
derived from limited tissues and cell types, necessitating the development of context-specific net-
works. Lastly, certain approaches solely focus on the network topology, neglecting the integration
of other modalities.

Integration of GWAS with cellular xQTL data

While we have discussed the integration of xQTLs from one or multiple tissues for gene prioritiza-
tion, most currently available xQTL data primarily reflect the genetic control of a molecular
phenotype in the entire tissue. If an XQTL effect is highly dependent on a specific cell type or
cell state (i.e., context-dependent xQTL or cd-xQTL), it could remain undetected when using bulk
tissue data, especially when the sample size is not sufficiently large. Therefore, the extent to which
cd-xQTLs can resolve the GWAS loci where no gene is prioritized using bulk XQTL data remains
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Figure 3. Overview of cellular molecular quantitative trait loci (xQTL) mapping strategies. Abbreviations: cd,
context dependent; GWAS, genome-wide association study; XQTL, molecular quantitative trait loci.

unclear. The rapid progress in single cell technologies has catalyzed extensive efforts to decipher the
genetic regulations governing molecular phenotypes within diverse cellular contexts, spanning spe-
cific cell types to distinct states. This evolving landscape has given rise to a new avenue of investiga-
tion, focusing on uncovering xQTLs at the cellular level. By integrating these cellular-level xQTLs with
GWAS data, an opportunity arises to unveil gene—trait associations that may remain concealed in
analyses conducted using bulk tissue data [100-103]. In this section, we provide an overview of
the cellular xQTL mapping strategies accompanied by currently available cellular xQTL studies and
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summarize the main findings in gene prioritization when integrating GWAS with cellular xQTL data
(Figure 3).

Mapping cd-xQTLs using cellular deconvolution

Cellular deconvolution methods provide a cost-effective solution for estimating the abundances
of specific cell types or states from bulk tissue data [104—106]. These methods enable the map-
ping of cd-xQTLs by examining the interaction between genotype and cell type abundance
[107-109] (Figure 3A). Applying this cd-xQTL mapping approach to cohort-level bulk tissue
data led to the identification of thousands of cd-eQTLs and cd-sQTLs [103]. The credibility of
these findings was reinforced by functional enrichment analyses, demonstrating that the lead
cd-xQTLs are enriched in cell type- or state-specific open chromatin regions [104,110]. The inte-
gration of cd-xQTLs into GWAS has led to the discovery of novel colocalized loci. For instance,
rs4292, a genetic variant located within a cell type-specific open chromatin region unique to prox-
imal tubule (PT) cells, was identified as an eQTL for the ACE gene. The effect size of this cd-eQTL
was found to be dependent on the proportion of PT cells and displayed a colocalization pattern
with a GWAS signal of systolic blood pressure [110]. In addition to prioritizing genes through
colocalizing GWAS signals with cd-eQTLs, alternative approaches, such as MiXcan and
CONTENT, directly assess the associations between context-dependent molecular phenotypes
(cd-MPs) and complex traits under the TWAS framework [111]. MiXcan utilizes the elastic net
model to predict cell type-dependent gene expression levels by treating the estimated cell type
abundances as priors. These predictions are then associated with phenotypes, and the associ-
ation P values of genes from various cell types are integrated using the Cauchy combination
test. CONTENT [112] decomposes gene expression profiles into context-specific and context-
shared components and then constructs genetic predictors for each component. These predic-
tors can be associated with phenotypes individually or in a combined manner. Unlike conven-
tional TWAS, which tests associations averaged across cellular contexts, these context-aware
TWAS methods accumulate association signals from different cellular contexts, thereby improv-
ing statistical power. Despite the success in prioritizing genes using cd-xQTLs or cd-MPs esti-
mated from bulk tissue data, there remain concerns regarding the biological interpretability of
these findings. One prominent concern is the possibility that cd-xQTLs or cd-MPs obtained
through the deconvolution (decomposition)-based strategy may not be specific to the focal con-
texts but rather inflated by other confounding factors.

Mapping cd-xQTLs using sorted cell populations

Compared with the deconvolution-based strategy, mapping cd-xQTLs from sorted cell popula-
tions could yield more precise results, thereby enhancing the biological interpretability of the find-
ings (Figure 3B). Several studies have performed cd-xQTL mapping using ‘omics data measured
from sorted cells [113-119]. For example, Ota et al. [115] conducted a large-scale analysis of
eQTLs (N = 416) across 28 immune cell types, demonstrating that genetic variants can influence
disease susceptibility through specific cell types. The study highlighted the variant rs62266700,
which is in high LD (r* = 0.85) with the systemic lupus erythematosus (SLE) GWAS variant
rs36059542. This variant only exhibits an eQTL effect on the ARHGAP3 gene in plasmablasts
among the 28 immune cell types, and is located within chromatin regions that are only open in
plasmablasts. This example underscores the significance of accounting for cell-type heterogene-
ity in eQTL mapping, because only the relevant cell type can manifest QTL effects on specific
genes, enabling cell type-specific gene prioritization. In addition to eQTLs, Zeng et al. performed
a large-scale (N = 616) caQTL analysis of neurons and microglia across four brain regions [114]
and found that only 10.4% of caQTLs are shared between neurons and glia. Beyond the cell
type level, cell state-dependent xQTL mapping is also achievable through the use of sorted
cells. Strober et al. conducted time-series RNA-seq on human cell lines undergoing differentiation
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from induced pluripotent stem cells (iPSCs) to cardiomyocytes [113]. They identified hundreds of
dynamic eQTLs that only exhibit regulatory effects on gene expression at specific stages during
iPSC differentiation. These transient genetic effects provide valuable biological insights into cer-
tain GWAS loci. For instance, the variant rs28818910, which manifests an eQTL effect on the
gene C150rf39 exclusively at intermediate stages of differentiation, is associated with body
mass index. Although promising, there are several limitations in mapping cd-xQTLs using the
cell purification strategy. First, the isolated cell populations may still be contaminated with other
types of cell. Second, the selection of cells may be biased toward specific, well-established cell
types or states. Finally, due to the high costs and low throughputs associated with this type of
technology, sample sizes are often small, which limits the discovery power.

Mapping cd-xQTLs using single cell sequencing

Single cell sequencing (sc-seq) or single nucleus sequencing (sn-seq) provides a powerful and
unbiased strategy for profiling cellular phenotypes, which has addressed several limitations in
the strategies based on bulk or sorted cell samples mentioned in the preceding text [101]. With
the continuous decrease in the cost of sc-seq and the advancement of sample multiplexing tech-
niques, it becomes increasingly feasible to generate sc-seq (or sn-seq) data in population-level
cohorts for cd-xQTL mapping [120].

Most single cell-based xQTL studies have relied on methods originally developed for bulk xQTL
mapping. These methods assume that the molecular phenotype across all individuals follows a
normal distribution and that there is only one observation of each molecular phenotype for
each individual. However, these assumptions do not necessarily hold true for sc-seq data due
to their sparsity and the presence of multiple cells for each molecular phenotype for each individ-
ual. To address this disparity, many studies have utilized the pseudo-bulk approach, which ag-
gregates cells of the same cell type or state within an individual to obtain cell set-specific
molecular phenotypes. Due to the high technical noise in sc-seq data, optimizing the pseudo-
bulk generation approach is critical for improving the robustness and statistical power. Leverag-
ing sample-matched bulk and scRNA-seq data, Cuomo et al. benchmarked different approaches
for identifying eQTLs from scRNA-seq data [121] and found that normalizing the data at the cel-
lular level and aggregating cells at the donor-run level (i.e., merging cells not only for each donor,
but also for each sequencing run) achieved the highest statistical power and the lowest false pos-
itive rate [121]. The pseudo-bulk approach has been applied to map cd-xQTLs across different
tissues [100,102,122-125]. For example, Bryois et al. performed snRNA-seq in brain tissues
and identified eQTLs across eight brain cell types with a sample size of 192 [123]. By integrating
these eQTLs with GWAS of brain disorders, they found that rs10792832, which is associated
with AD, only functions as an eQTL for PICALM in microglia. Yazar et al. conducted the largest
single cell-based eQTL study to date by performing scRNA-seq in peripheral blood mononuclear
cells (PBMCs) from 982 donors [100]. They identified thousands of eQTLs that are active only in
specific cell types. By leveraging a colocalization method, they found that 19% of these cell type-
specific cis-eQTLs might share the same causal variants with GWAS loci of seven autoimmune
diseases. In addition to mapping eQTLs in cell types, some studies have also stimulated cells
in vitro to identify eQTLs that function in specific cell states arising from stimulations [125-132].
For example, Soskic et al. mapped eQTLs at different activation stages of CD4+ T cells [126]
and identified 127 genes for which eQTLs in the activated T cells colocalized with GWAS loci of
immune diseases. These genes were significantly enriched in the gene set exhibiting cell-state dy-
namic regulations.

Another approach for mapping cd-eQTLs is treating each cell as a unique observation, offer-
ing a flexible framework for modeling the continuous state of individual cells [133,134]. The

16  Trends in Genetics, Month 2024, Vol. xx, No. xx

Trends in Genetics


CellPress logo

Trends in Genetics

linear mixed model (LMM) is used to account for correlations among cells from the same
donor or sequencing run. Conventional LMM applications often involve log or rank-based
inverse normal transformation of phenotypes. The transformed phenotypes are assumed to
follow a normal distribution. However, due to the sparsity of single cell data, such transfor-
mations may lead to elevated FDRs, as demonstrated by the benchmark analyses from
Cuomo et al. and Nathan et al. [121,134]. To address this issue, Nathan et al. proposed
the use of the generalized linear mixed model (GLMM) based on the Poisson distribution to
fit the count data of cells [134]. Using scRNA-seq data in T cells, Nathan et al. utilized canon-
ical correlation analysis (CCA) to obtain the top 20 canonical variates as representations of
distinct states associated with T cell cytotoxicity, regulatory functions, and other character-
istics. By testing the interaction term between the canonical variates and genotypes of indi-
vidual cells, they found that approximately one-third of the 6511 eQTLs, identified using the
pseudo-bulk approach, exhibited cell state-dependent effects. Furthermore, they discovered
that genetic variants associated with autoimmune diseases were significantly enriched in
these cell state-dependent eQTLs.

In summary, cellular deconvolution methods offer a cost-effective solution for mapping cd-
xQTLs in conventional xQTL mapping cohorts with genotype and bulk molecular phenotype
data. By contrast, cell sorting and single cell technologies provide a more precise approach
to map xQTLs at higher resolution. While the integration of GWAS with cd-xQTLs opens a
promising avenue to uncover trait-associated genes that may be obscured in bulk data due
to the heterogeneity of genetic effects across different cell populations [100-103], there are
several limitations that need to be addressed. First, small sample sizes of cd-xQTL studies,
often due to financial constraints, limit the statistical power and generalizability of findings.
Second, cd-xQTLs in solid tissues are less studied because cohort-level scRNA-seq or
snRNA-seq data from those tissues are rarely available. Third, there is a need for further exploration
of diverse molecular phenotypes beyond gene expression, such as chromatin accessibility, epige-
netic modifications, and RNA splicing, to gain a more comprehensive understanding of the genetic
regulations under various cellular contexts. Lastly, mapping cd-xQTLs during different develop-
mental stages requires further investigation to capture the dynamics of genetic regulation through-
out ontogeny.

Potential of gene prioritization in drug repurposing

Recent advancements in drug development, as exemplified by the development of evolocumab,
informed by PCSK9 gain-of-function mutations in familial hypercholesterolemia [135-137], and
romosozumab, inspired by SOST loss-of-function mutations in sclerosteosis [138,139], have
demonstrated the potential of human genetics to propel the development of new therapeutics.
This is particularly true when genetic effects closely mimic pharmacological interventions [140],
a notion that is steadily gaining empirical support. For example, Finan et al. [141] showed that ge-
nomic regions associated with complex traits are enriched with approved drug targets. Moreover,
retrospective analyses revealed that drugs targeting genes supported by human genetics are ap-
proximately twice as likely to be approved for clinical indications [142,143]. A recent study also
indicates that 33 out of 50 drugs approved by the FDA in 2021 were supported by human genetic
evidence [144]. These findings enhance the connection between drugs and diseases, opening
potential clinical opportunities by uncovering disease-associated genes that could be targeted
for therapeutic interventions (Figure 4A). We have discussed in the preceding text the methods
for prioritizing genes underlying GWAS signals. However, there remains a challenge regarding
how these genes can facilitate drug discovery or repurposing. In this section, we explore various
approaches that leverage the insights gained from GWAS to identify potential avenues for drug
repurposing.
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Figure 4. Overview of strategies for drug repurposing utilizing genetic data.

Genetics-informed drug repurposing

An intuitive approach for genetics-informed drug repurposing is to collect disease-associated
genes from post-GWAS analyses and evaluate whether existing drugs target these genes
(Figure 4B). For example, a putative disruptive missense variant rs11209026 in /L23R exhibits a
protective effect against Crohn’s disease. This insight led to the discovery of IL23-targeted ther-
apies for Crohn’s disease, such as risankizumab and ustekinumab, initially developed for
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psoriasis treatment [145]. Similarly, prioritizing genes from GWAS loci through multiple sources of
evidence, including missense variants, cis-eQTLs, and PPIs, for rheumatoid arthritis (RA) revealed
that certain drugs, such as flavopiridol and alvocidib, which target the CDK4/6 genes and were
initially approved for cancer treatment, could be repurposed for RA treatment [146].

Randomized controlled trials (RCTs) are considered the gold standard for examining causal ef-
fects in medical treatments, and MR is often referred to as a ‘natural’ RCT that is not limited by
ethical, feasibility, and adherence considerations [50,147-149]. MR-based drug repurposing
operates on the assumption that the effect of a genetic variant on a disease could mimic the life-
long activation or inhibition of a drug target. For example, MR analysis showed that overexpres-
sion of PCSK9 is a risk factor for hypercholesterolemia, which aligns with the therapeutic action of
the approved PCSKQ inhibitor, alirocumab (a monoclonal antibody of PCSK9) [50]. Beyond its
potential in identifying drug targets, MR can also assist clinicians in making more informed pre-
scription decisions and uncover potential side effects associated with drug interventions. For ex-
ample, given the high prevalence of hypertension among patients with psychiatric disorders,
Chauquet et al. [150] used SMR to demonstrate that reduced ACE gene expression level is asso-
ciated with both decreased systolic blood pressure and increased schizophrenia risk, suggesting
that antihypertensive medication (i.e., ACE inhibitors) might increase the risk of schizophrenia.
Similarly, MR analyses have associated statins, cholesterol-lowering drugs, with a slightly in-
creased risk of type 2 diabetes mellitus [151]. Compared with traditional drug target discovery,
which tends to be lengthy and time-consuming, MR can be used to swiftly and effectively identify
potential targets for emerging infectious diseases or pandemics. One prime example is the rapid
discovery of a gene target for COVID-19 using SMR. It was found that the expression level of
TYK2 is significantly associated with COVID-19 [152]. Not long after the identification of TYK2
as a risk gene, the JAK inhibitor baricitinib, which targets the enzyme encoded by TYK2 and
was initially developed for treating RA, received emergency use authorization from the FDA for
the treatment of COVID-19 [153].

Transcriptome-based drug repurposing

Transcriptomic data can also be leveraged for drug repurposing based on the signature reversion
principle [154-156]. The fundamental assumption is that compounds exhibiting reverse effects
on gene expression profiles, characterized by a negative correlation between drug-induced
gene expression profile and genetically regulated expression signature of a disease, could
serve as prospective drug candidates for disease treatment (Figure 4D). The Connectivity Map
(CMap) and the Library of Integrated Network-based Cellular Signatures project (LINCS) L1000
library [157,158] are two widely used databases containing extensive transcriptomic profiles of
cell lines treated with numerous genetic and pharmacological perturbagens. CMap comprises
~7000 gene expression profiles from ~1300 compounds on five cancer cell lines, while LINCS
L1000 contains ~1 300 000 gene expression profiles from ~42 000 genetic and small-
molecular perturbations on ~90 cell lines. These valuable databases have facilitated
transcriptome-based drug repurposing. For instance, So et al. [154] utilized Spearman and
Pearson correlation, as well as Kolmogorov—Smirnov (KS) tests, to compare the transcriptome
profiles derived from TWAS analysis against drug-induced gene expression profiles from
CMap. Through this analysis, they identified several nonsteroidal anti-inflammatory drugs
(NSAIDs; i.e., cyclooxygenase inhibitors), which may have therapeutic potential for AD. Similarly,
the Trans-Phar (integration of TWAS and pharmacological database) pipeline performs in silico
screening of compounds from the LINCS L1000 library through Spearman correlation analysis
[156]. This pipeline, when applied to 29 GTEXx tissues and 77 LINCS L1000 cell types across
13 distinct categories, identified several promising compounds, including anisomycin for schizo-
phrenia and verapamil for patients hospitalized with COVID-19. Despite the success of
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transcriptome-based drug repurposing, one major limitation of this approach is that the identified
drug candidates often lack well-defined biological mechanisms of action.

Network-based drug repurposing

We have discussed the value of network-based gene prioritization in the preceding text. A recent
study showed that network diffusion is also beneficial in identifying drug-target genes with weak
genetic support [159]. Another study suggests that genes identified through GWAS are closely
connected to drug-target genes within biological networks [160]. These observations provide
possibilities for drug repurposing by examining the proximity of genes identified through GWAS
to drug targets in human interactome networks (Figure 4C). One notable example is the Ge-
nome-wide Positioning Systems network (GPSnet) [161], which uses RWR to identify disease—
gene modules by integrating somatic mutations and transcriptome profiles with human PPI net-
works. It then tests whether these modules are enriched in drug-induced up- and downregulated
gene sets sourced from CMap. Simultaneously, by integrating disease—gene modules with drug—
gene networks, network proximity analysis is performed to identify significant associations be-
tween drugs and diseases. As a result, GPSnet is capable of not only prioritizing disease-gene
modules with high druggable potential, but also identifying new indications for approved drugs.
Network information can also be leveraged based on the signature reversion principle, similar
to transcriptome-based drug repurposing. For example, Pathway Signatures for Drug
Repositioning (PS4DR) [162] is a multimodal and integrative workflow that combines GWAS
data, transcriptomic signatures, and pathways to prioritize drugs predicted to reverse disease
pathway dysregulations. The primary limitation of network-based drug repurposing is the incom-
pleteness of human interactome network data, particularly in specific tissues and cell types.

Gene set enrichment-based drug repurposing

Databases, such as DrugBank [163], TTD [164], ChEMBL [165], and DGldb [166], provide infor-
mation on the relationships between gene sets and drugs, thereby facilitating examination of po-
tential associations between drug sets and disease phenotypes (Figure 4E). One method that
enables this examination is Genome for REPositioning drugs (GREP) [167], which uses Fisher’s
exact test to assess whether genes prioritized from GWAS are enriched in genes targeted by
drugs in clinical indication categories, such as Anatomical Therapeutic Chemical (ATC) and
International Classification of Diseases 10 (ICD10). Another web platform, Drug Targetor [168],
utilizes bipartite drug—gene connections to define gene sets for each drug. It then applies
MAGMA gene-set analysis to calculate a genetics-informed drug score, assessing whether a
drug—gene set is more associated with a disease compared with other sets. Similarly, Bell et al.
[169] used this approach, supplementing it with a multiple linear regression model, to determine
whether drugs within a specific group exhibit a stronger connection to disease-associated genes
compared with others. The Bell et al. approach allowed for exploration of both individual drugs
and groups of drugs categorized by ATC Ill code, mechanism of action, and clinical indication.
Overall, gene-set enrichment analysis is capable of identifying clinically relevant drugs that target
the gene set associated with a specific disease, thereby offering a pool of potential drug candi-
dates for repurposing. However, it primarily uncovers indirect associations inferred from drug—
gene interactions, rather than directly linking the pharmacological action of a drug to a disease.
Additionally, it does not indicate the direction (i.e., beneficial or adverse) of the drug effect on dis-
ease. Finally, it should be acknowledged that the enrichment results might be influenced by the
over-representation of drug targets within specific categories, such as G protein-coupled recep-
tors, ion channels, nuclear receptors, enzymes, transporters, and immune checkpoint proteins.

In summary, GWAS and post-GWAS analyses have provided valuable opportunities to identify
potential therapeutic targets for drug discovery and repurposing. However, this area has certain
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complexities that require careful consideration and attention. First, most analyses discussed in
the preceding text heavily rely on historical drugs and their targets, which might bias the prioriti-
zation of drug candidates. Another complexity in translating genetics discoveries to drugs is
that the magnitude of genetic effect size does not necessarily equal drug effect size [170]. For
example, although the genetic effects of the HMGCR variants, rs17238484 and rs12916, on
low-density lipoprotein (LDL) cholesterol are much smaller than those of the loss-of-function
mutations in PCSK9, this does not hinder HMGCR from being an effective therapeutic target of
stains for the treatment of hypercholesterolaemia [136,140,171]. In fact, the drug effects of rosuva-
statin (targeting HMGCR) and alirocumab (targeting PCSK9) on LDL cholesterol are comparable
[172-174], suggesting that genetic variants with small effect sizes do not necessarily imply low
drug efficacy. In addition, gene associations that link drug target genes to unintended phenotypes
indicate the potential risk of adverse events in specific organ systems [175,176]. By using human
genetics data to identify potential drug targets and safety liabilities, we can better predict the effects
of lifelong modulation of therapeutic targets and anticipate the risk for on-target and off-target
adverse events [177].

Concluding remarks

GWASSs have propelled the development of various methods for gene prioritization, creating new
avenues for the identification of therapeutic targets. Despite the varying performances of different
methods and tools, the wealth of available data enables the formulation of hypotheses on disease
mechanisms. However, despite the usefulness of the tools and workflows outlined in this review,
no universal tool exists for pinpointing causal genes and mechanisms. Therefore, there is a strong
need for continued development of user-friendly tools, leveraging new data and novel insights
(see Outstanding questions). Moreover, for benchmark studies comparing different methods,
the set of genes currently identified as ‘causal’ is likely to be strongly biased toward those nearest
to the GWAS peak for several reasons. For example, genes with high-probability coding variants
are more readily identified as causal and generally correspond to the nearest gene. Additionally,
genes near the center of the GWAS peak are more likely to be investigated and accumulate ev-
idence for being causal. Thus, a comprehensive set of high-confidence causal genes is in high de-
mand for benchmark studies. Furthermore, functional validation, both in vitro and in vivo, remains
essential for establishing causal links between genes and diseases.

Gene prioritization has greatly benefited from the extensive resource of cis-xQTL data. By con-
trast, trans-xQTLs, such as trans-eQTLs, which are estimated to account for ~70% of the herita-
bility in mRNA expression [178], hold immense potential in advancing our understanding of distal
genetic regulation. Nevertheless, the substantial number of association tests required for
genome-wide trans-xQTL mapping presents a considerable challenge, necessitating the devel-
opment of statistical methods to deal with the multiple testing problem and computational strat-
egies to manage the resulting data deluge. In addition, while GWAS have identified numerous loci
associated with complex traits in various ancestries, most samples used for large-scale xQTL
studies are of European ancestry, resulting in a lack of xQTL data for other ancestries [179].
This limitation could restrict the generalizability of gene prioritization findings, potentially
overlooking crucial genetic factors specific to certain ancestry groups. While initiatives such as
the Multi-Ethnic Study of Atherosclerosis (MESA) have made progress by characterizing eQTLs
in African American (N = 233), Hispanic (N = 352), and European (N = 578) ancestries separately
[180], further efforts in this direction are needed.

In addition to integrating GWAS with xQTL data for gene prioritization, enhancer-gene maps
can connect genetic variants in enhancers to their target genes. However, creating these
maps based on computational methods, such as co-accessibility and co-activity, often
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Outstanding questions

How can we improve the precision
of gene prioritization methods to
distinguish between causal and co-
regulated genes?

How can we accurately define positive
(causal) and negative (noncausal)
genes when benchmarking gene
prioritization methods?

How can we integrate GWAS with
XQTLs from various ‘omics layers, tis-
sues, cell types, and even cell states
for a joint analysis?

What strategies can be utilized to
investigate cd-xQTLs that have been
underexplored for certain molecular
phenotypes, such as RNA splicing
and protein abundance?

What methodologies can we use to
identify the putative causal genes
underlying GWAS loci, where the ef-
fects of genetic variants on the trait
are mediated by spatiotemporal-
dependent genetic regulation of mo-
lecular phenotypes?

How can we effectively integrate
different types of biological network to
derive a combined and representative
network for network-based gene prior-
itization?

How can gene prioritization data and
related information be utilized to
predict the success rate of drug
targets in clinical trials?

How can we leverage associations
between drug target genes and
unintended phenotypes to predict
and manage the risk of adverse
events?
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requires large-scale epigenomic and transcriptomic atlases. While perturbation experiments,
such as CRISPRI, can suggest causal links between enhancers and genes, it is challenging
to scale these experiments up due to the absence of cell- or tissue-specific experimental pro-
tocols and the complexity of the experiments. Given that enhancer—gene connection catalogs
are far from complete, there is an urgent need for high-throughput experiments that can gen-
erate connection maps under various conditions.

The advent of whole-exome and whole-genome sequencing studies in large cohorts has greatly
facilitated the identification of rare variants associated with complex traits [181,182]. Unlike com-
mon variants, rare variants generally do not exhibit strong LD with other commmon or rare variants,
suggesting that the most significantly associated rare variants are primarily causal [183]. More-
over, rare variants located in the coding region tend to exert larger effects and can often be di-
rectly linked to target genes. However, because the power of detection depends on both effect
size and minor allele frequency, large sample sizes are required to detect most of the rare variant
associations [184]. With ongoing advances in biobank efforts and growing accessibility of se-
quencing technology, we expect a continuous increase in the discovery of rare variants and
genes, which will further enhance our understanding of the genetic basis of complex traits.

Compared with those from cellular and animal models, findings from human genetics studies are
more relevant to human diseases. Approaches based on human genetics are increasingly impor-
tant for target identification in early drug development and nonclinical safety assessment. How-
ever, the effectiveness of genetics-informed drug development has been limited by the
polygenic nature and heterogeneity of complex diseases. To bridge the translational gap between
human genetics findings and clinical outcomes, a potential direction for future research is the de-
velopment of methods capable of integrating disease-associated variants with multi-omics data
and biological networks, including those at cellular level, as well as clinical trial data to prioritize
candidate therapeutic targets.
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